Eighth rank isotropic tensors and rotational averages

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-averages of Diffusion Tensors

For positive semi-definite tensors like diffusion tensors in the plane it is possible to calculate several different means or p-averages. These are related to p-norms for functions, but produce mappings rather than numbers as means. We compare these means for various values of the real parameter p. One important future application is the filtering and interpolation of tensor fields in Diffusion...

متن کامل

Rank and regularity for averages over submanifolds

This paper establishes endpoint Lp−Lq and Sobolev mapping properties of Radon-like operators which satisfy a homogeneity condition (similar to semiquasihomogeneity) and a condition on the rank of a matrix related to rotational curvature. For highly degenerate operators, the rank condition is generically satisfied for algebraic reasons, similar to an observation of Greenleaf, Pramanik, and Tang ...

متن کامل

Orthogonal Rank Decompositions for Tensors

The theory of orthogonal rank decompositions for matrices is well understood, but the same is not true for tensors. For tensors, even the notions of orthogonality and rank can be interpreted several diierent ways. Tensor decompositions are useful in applications such as principal component analysis for multiway data. We present two types of orthogonal rank decompositions and describe methods to...

متن کامل

Symmetric Tensors and Symmetric Tensor Rank

A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k non-zero vectors. Any symmetric tensor can be decomposed into a linear combination of rank-1 tensors, each of them being symmet...

متن کامل

Irreducible Killing Tensors from Third Rank Killing-Yano Tensors

We investigate higher rank Killing-Yano tensors showing that third rank Killing-Yano tensors are not always trivial objects being possible to construct irreducible Killing tensors from them. We give as an example the Kimura IIC metric were from two rank Killing-Yano tensors we obtain a reducible Killing tensor and from third rank Killing-Yano tensors we obtain three Killing tensors, one reducib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1981

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/14/6/008